From Qubits to Cures: The Promise of Quantum Computing in Pharmaceutical Research and Development (a Realistic View)

by Andrii Buvailo, PhD          Biopharma insight

Disclaimer: All opinions expressed by Contributors are their own and do not represent those of their employers, or BiopharmaTrend.com.
Contributors are fully responsible for assuring they own any required copyright for any content they submit to BiopharmaTrend.com. This website and its owners shall not be liable for neither information and content submitted for publication by Contributors, nor its accuracy.

  
Topics: AI & Digital   
Share:   Share in LinkedIn  Share in Reddit  Share in X  Share in Hacker News  Share in Facebook  Send by email

In a recent announcement, Moderna and IBM unveiled their partnership aimed at utilizing cutting-edge technologies, such as artificial intelligence (AI) and quantum computing, to accelerate research in messenger RNA (mRNA) therapeutics and vaccines. This collaboration highlights the growing interest in the potential of quantum computing within the life sciences sector.

Quantum computing, a branch of computer science, focuses on leveraging the principles of quantum theory to solve complex problems that classical computers are unable to address. The partnership between Moderna and IBM will explore various use cases of quantum computing within the life sciences, particularly mRNA medicine design.

As part of the collaboration, both organizations will employ MoLFormer, an AI-based foundation model, to predict the properties of molecules and gain insights into the characteristics of potential mRNA medicines. Moderna plans to utilize MoLFormer to optimize lipid nanoparticles in mRNA, which protect it as it travels within the body, and the mRNA itself, responsible for instructing cells on combating diseases. By incorporating AI and formulation discovery approaches, Moderna aims to create advanced mRNA medicines.

During the collaboration, Moderna will participate in the IBM Quantum Accelerator program and the IBM Quantum Network. IBM, in turn, will offer access to and expertise in quantum computing systems and their applications within the life sciences industry.

IBM's plans for universal quantum computing in the medical field, unveiled in 2017, have garnered interest among healthcare and life sciences organizations. However, concerns regarding the technology's impact on healthcare data security remain. In October 2022, Cleveland Clinic announced its partnership with IBM to install the first healthcare quantum computer in the US, called the IBM Quantum System One. This installation is part of the Cleveland Clinic's initiative to accelerate biomedical discoveries and the Cleveland Clinic-IBM Discovery Accelerator, a 10-year collaboration to advance biomedical research.

The partnership between Moderna and IBM marks a significant step in exploring the potential of quantum computing and AI for drug discovery and the development of mRNA therapeutics. With more organizations recognizing the advantages these technologies can bring, the life sciences industry may see substantial advancements in the coming years.

 

What can quantum computers do?

Quantum computing operates by substituting classical computing's bits with quantum bits, commonly referred to as "qubits." Unlike bits, which can only store binary values of 0 or 1, qubits can exist as a superposition of both 0 and 1 simultaneously. This is made possible through a phenomenon in quantum mechanics called entanglement.

Theoretically, quantum computers can evaluate all potential states or results of a problem and analyze them concurrently, says Robert Penman, an analyst at GlobalData, the parent company of Clinical Trials Arena. However, constructing a functional quantum computer is a complex and resource-demanding task.

Continue reading

This content available exclusively for BPT Mebmers

Topics: AI & Digital   

Share:   Share in LinkedIn  Share in Reddit  Share in X  Share in Hacker News  Share in Facebook  Send by email